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ABSTRACT 

A system of ordinary nonlinear differential equations, governing 
the scalar and vector potentials associated with a one-dimensional 
electromagnetic wave in a hot plasma, has been derived using a 
properly constructed stationary solution of the nonlinear Boltzmann- 
Vlasov equation in a moving reference frame. The propagation of the 
transverse electromagnetic wave is considered for three cases: no 
applied static electromagnetic field, a static magnetic field in the 
direction of wave propagation, and static electric and magnetic fields 
in the direction of propagation. , 

In the static field-free case, assuming electrical neutrality 
and considering an electron temperature anisotropy in the plasma, the 
derived dispersion relation indicates that the wavelength of the 
transverse electromagnetic wave is amplitude dependent. In the second 
case, the transverse electromagnetic wave appears as a circularly 
polarized sinusoidal wave in a laboratory frame of reference. For 
an electrically neutral plasma with a small-temperature anisotropy and 
whose mean velocity in the direction of wave propagation vanishes, the 
derived dispersio? relation reduces to the commonly quoted dispersion 
relation for Alfven waves. 

The influence of a static electric field along the direction of 
propagation is studied and it is found that under small-amplitude and 
weak static electric field conditions, the transverse electromagnetic 
wave appears as an elliptically polarized plane wave in the laboratory 
frame. The effect of the static electric field on the wavelength and 
the Faraday rotation is investigated and discussed. 
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NONLINEAR ELECTROMAGNETIC WAVE PROPAGATION I N  A MAGNETOACTIVE FINITE 

TEMPERATURF: PLASMA 

- I. INTRODUCTION 

The study of electromagnetic wave propagation i n  a plasma 

has app l i ca t ion  i n  many d iverse  f i e l d s  of physics such as ,  f o r  example, 

t h e  i n t e r p r e t a t i o n  of microwave diagnost ic  da t a  obtained from labora tory  

plasmas'' 2 J  ', as t rophys ica l  problems such a s  the  generat ion of cosmic 

r - f  rad ia t ion* ,  and the  e n t i r e  f i e l d  of r ad io  wave propagation i n  t h e  

i ~ n o s p h e r e ~ , ~ .  This wide range of i n t e r e s t s  i n  the  b a s i c  problem has 

l e d  i n  recent  years  t o  many t h e o r e t i c a l  s tud ie s  of plasma  oscillation^^-^^. 

The only dynamical plasma phenomena t h a t  have been t r e a t e d  i n  a sat is-  

fy ing  way a r e  those descr ibable  i n  terms of small-amplitude departures  

from uniform e q u i l i b r i a .  Many, i f  not most, plasmas--both labora tory  

and astrophysical--do not f i t  such a descr ip t ion .  The number of 

nonl inear  problems which have been solved t o  da te  i s  r a t h e r  l imi t ed .  I n  

p a r t i c u l a r ,  two kinds of nonl inear  plasma configurat ions have been 

inves t iga t ed .  

desc r ip t ion ,  t h e r e  e x i s t s  a "wave" coordinate system i n  which a l l  

q u a n t i t i e s  appear t o  be time-independent. A " laboratory" observer,  i n  

genera l ,  would not  view the  phenomena from t h i s  p a r t i c u l a r  frame, bu t  

a l l  macroscopic va r i ab le s  would appear t o  have the  form of (r - v o t ) ,  

where t h e  ve loc i ty  v i s  a constant,  and r and t a r e  the  pos i t i on  and 

time va r i ab le s  r e spec t ive ly .  The more usual  approach i s  t o  s tudy the  

problem i n  a coordinate  frame which moves with the  ve loc i ty  7 
r e f e r  t he  r e s u l t  back t o  labora tory  coordinates  a t  the  end. The more 

In  t h e  f i r s t ,  which i s  known as a "constant p ro f i l e ' '  

+ +  

-+ -+ 
0 

and 
0 
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general nonlinear problems involve situations in which no such preferred 

frame exists; a simple example would be the steepening of nonlinear 

sound waves according to the Euler equation14. 

The former approach has been used to study magnetosonic waves 

in a cold plasmal’ as well as the nonlinear Alfvk waves16’ 17’ la. 

Nekrasovl’ has studied the steady-state nonlinear motion of an electron- 

ion plasma by a similar approach. 

made to study the interaction of plasma with a propagating electro- 

magnetic plane wave in a wave frame, using the one-dimensional Boltzmann- 

Vlasov equation and Maxwell’s equations. 

In the present paper an attempt is 

11. BASIC EQUATIONS - -  

Consider a two-component plasma (positive ions and electrons) in 

which the effects of collisions are assumed to be negligible. The 

electron distribution function f(r,v,t) and the ion distribution function 

F(r,v, t) for this plasma are governed by the Boltzmann-Vlasov equations 

written as follows: 

++  

+ +  

e - )  --f + 
* V f - - ( E + v x B ) ’ V f  = 0 af + z+v m v 

and 

$ + ; ) . W + - ( E + v x B ) * V f  e +  + + = 0 , M V 

where m and Mdenote, respectively, the mass of the electron and ion, and 

e is the electronic charge which is taken as a positive quantity- 

The electromagnetic fields in the plasma a r e  governed by the 

Maxwell equations: 
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and 
+ 

(2d) V * B  = 0 . 
The e l e c t r i c  displacement vector  + D and t h e  magnetic f l u x  dens i ty  + B a r e ,  

respec t ive ly ,  r e l a t e d  t o  t h e  e l e c t r i c  f i e l d  i n t e n s i t y  

f i e l d  i n t e n s i t y  H i n  t h e  usua l  manner: 

and t h e  magnetic 
+ 

+ 
D = co2 ( 3 4  

where E 

of vacuum respec t ive ly .  

charge dens i ty  p may be  given i n  terms of t h e  d i s t r i b u t i o n  func t ions  as 

and C L ~  denote t h e  d i e l e c t r i c  constant  and t h e  permeabi l i ty  
0 

The convection cu r ren t  dens i ty  3 and t h e  

3 = eJ;(F - f )d3v ( 4 4  
! and 

I 

p = e s  (F - f)d3v . 

It i s  w e l l  known t h a t  t h e  ana lys i s  of electromagnetic f i e l d s  i s  o f t e n  

f a c i l i t a t e d  by t h e  use of a u x i l i a r y  p o t e n t i a l  func t ions .  A general  

s o l u t i o n  of t h e  inhomogeneous system (Eqs. 2 )  can be given as  

f ollows2° : 

and 

where 0 and 2 a r e  t h e  p o t e n t i a l s  of t h e  source d i s t r i b u t i o n  which i s  

i n t e rna l  t o  t h e  reg ion  under considerat ion,  and (Do a n d l o  a r e  p o t e n t i a l s  
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- 1  
of t h e  source d i s t r i b u t i o n  which i s  e n t i r e l y  ex te rna l  t o  t h e  region under 

considerat ion.  These p o t e n t i a l s  a r e  subject  t o  t h e  following condi t ions:  

and 

X = -P,J + , 

oxo = 0 , 

O Q 0  = 0 

0 
a0 

-+ 
V . A  + P E  = o ,  

0 o o a t  

where the symbol 0 denotes t h e  D'Alembertian operator  def ined by 

Define an equivalent p o t e n t i a l  func t ion  '??I by t h e  following 

d i f f e r e n t i a l  equations: 

and 
+ a2 

v x a = -Po (e + vo0) , 

so  t h a t  Eqs.  5 can be w r i t t e n  as 

a7 
at 3 = - v o -  

and 

where 

-+ B = 0 x 7 ,  



I 
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It should b e  noted t h a t  t h e  s e t  of Eqs .  8,which i s  equivalent  t o  t h e  

s e t  of Eqs. 7a-c, can a l s o  be wr i t t en  as 

Pos tu l a t e  t h e  ex is tence  o f  a moving frame of re ference  i n  which 

a l l  q u a n t i t i e s  of i n t e r e s t  appear t o  b e  s t a t iona ry ,  i . e . ,  a t r a n s f o r -  

mation 5 
0 0 

i s  a constant  independent of t and 2, and thus  5 i s  t h e  d i s t ance  

measured i n  t h i s  moving frame of reference.  I n  t h e  present  one- 

dimensional a n a l y s i s ,  it i s  assumed t h a t  macroscopic q u a n t i t i e s  such 

as t h e  electromagnetic f i e l d s  and p o t e n t i a l s  depend only upon 5, while 

t h e  dens i ty  d i s t r i b u t i o n  func t ions  f and F a r e  func t ions  of 5 a s  wel l  

= (z  - v t )  i s  made t o  a moving coordinate  system where v 

as t h e  p a r t i c l e  v e l o c i t i e s  

5 

Eq. 9a g ives  

‘3Vx 
E = v -  , E  = 

X 0 dS Y 

and Eq. 9b becomes 

dV 
B = - Y  

X dS 

It i s  t o  be notel 

’ 

t 

v v and v . Thus f o r  x’ Y Z 

= (z  - vo t )  , 

( 1 2 4  
dvZ v E = - -  d o + v  - 

dV 

dS o dS ’ o dS Z 

a n d B  = O .  dVX B = -  
Y dS Z 

iat t h e  time-dependent electromagnetic f i e l d  

components a r e  r e l a t e d  i n  t h e  following manner: 
i 

ExBx + EYBY = O ’ 
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which implies t h a t  3 i s  perpendicular t o  B' s p a t i a l l y .  

With t h e  a i d  of Eqs .  4, Eq. 6a y ie lds  

00 3 d2A 
(1 - -$ 2 = -p 0 e[l[vy(F - f)dvxdv Y Z  dv 

-W d5 

and 

whereas E q .  6b becomes 

and Eq. 6c gives 

where c = 1/$.,., i s  the  speed of l i g h t  i n  vacuum. 

On the other hand Eq. l a  may be w r i t t e n  as follows with the  a id  

of E q s .  12a and 12b: 

and Eq. lb becomes 
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I 

= O , (14b) aF 
(0 - vxvx - v v - vovz) 5 

e d  

Y Y  Z 
- E  dS 

where uz = (v, - uo). 

It i s  not d i f f i c u l t  t o  show t h a t  t h e  genera l  so lu t ion  of 

Eq. 14a has  t h e  following form: 

f ( S Y  VX’ VYJ vz 

where Ux = hX - (e/m)vxl, 

u = Cv - (e/m)vy1, 
Y Y 

w = l/&[v; + v2 + u2 - (Uz + U2)]+ e(voVz - 0) and 
Y Z  Y 

- 
f i s  an a r b i t r a r y  d i f f e r e n t i a b l e  function of i t s  arguments. 

t h e  genera l  so lu t ion  of Eq. 14b has t h e  form 

Simi la r ly ,  

U = [v + (e/bl)Vy] and 
Y i  Y 

= 1 / 2 ~ [ v z  + v2 + u2 - (uEi + u2 ) - e (v2 iZ  - @ ) I .  
‘i Y Z  Y i  

It i s  obvious t h a t  once t h e  forms of t h e  d i s t r i b u t i o n  func t ions  F and 

f a r e  known, then  t h e  in t eg ra t ion  i n  Eqs. 13a-d can be c a r r i e d  out .  

Thus a s e t  of d i f f e r e n t i a l  equations governing t h e  p o t e n t i a l s  3 and 

0 can be  derived. 

- 



-8 - 

Suppose t h a t  t h e  d i s t r i b u t i o n  func t ions  a r e  of t h e  form 

-1 - f(ux,u ,w> = N [(E 7” Gel exp [- fa: u2 + 8 u2) - yew] 

Y e m  e x  e y  

(16a) 

and 
I 

where 

with Kdenot ing t h e  Boltzmann constant ,  and Tx, T 

temperatures corresponding t o  t h e  d i r e c t i o n s  along t h e  t h r e e  coord ina te  

axes. Then upon eva lua t ing  t h e  i n t e g r a l s  of Eqs. l3a-d’ with t h e  a i d  

of Eq. 10, t h e  following se t  of d i f f e r e n t i a l  equat ions i s  obtained: 

and TZ are t h e  
Y’ 

- p e G V  
0 x x  ’ 

(l-$)s = p e G V  0 Y Y  , 
dS 
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and 
I 

where 

GX m 

l 
and 

I 

I 

I 

where Ni and N 

r e spec t ive ly  i n  the  plasma a t  some reference  po in t  5 = 5, .  

a r e  t h e  constant  number d e n s i t i e s  of ions and e lec t rons  e 

The above s e t  of nonl inear  ord inary  d i f f e r e n t i a l  equations can 

be  solved i n  p r i n c i p l e  once t h e  values of  Vx, V 

d e r i v a t i v e s  with r e spec t  t o  5 a r e  spec i f i ed  a t  5 = 5,. 

t o  no te  t h a t  t h e  vector  p o t e n t i a l  may be  denoted by ? = 2 + 2 where 2 

V and 0 and t h e i r  
Y' z 

It i s  of i n t e r e s t  

i s  t h a t  p a r t  assoc ia ted  with t h e  inc ident  electromagnetic wave and 2 
i s  t h a t  due t o  the  motion of t h e  charged p a r t i c l e s  i n  the  plasma. 

a and (D a r e  known, then  t h e  electromagnetic f i e l d  i n  t h e  plasma can be 

Once 

obtained from Eqs. 12a and 12b. 
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For convenience a quantity Cp(5) is defined by 

Then 

and Eqs. 17c and 17d can be combined to give 

-vi 
- -  d'rp - - e E (Nie - Nee-'e) . 

0 d5 ' 
Thus Eqs. 

must be solved for the potential functions, 

note that when 

l7a, 17b and 1 8 ~  form a set of nonlinear equations which 

It is of interest to 

T = T  - and Tix = T = Til (19) 
ex eY - Tel iY 

G is equal to G and Eqs. l7a and l7b become respectively 
X Y' 

d2Vx d2V 
- -  a n d Y = R V  , 

d5' d5 O Y  - RoVx 

where 

and 
E 
0 - 

ez 
2N KT 

e ez 
'e - 



I 
I 
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t 

with cu2 3 (Nee2/mEo) and R2 = (Nie2/MEo). 
P P 

Let p(k) be the amplitude and @ ( E )  the  s p a t i a l  angle between 

the x- and y-components of the  transverse magnetic f i e l d  vector i n  

t h e  system, i . e . ,  

p ( S )  = dm and O(5) = t a n  -l@) ; 

then, with t h e  a i d  of Eqs .  20, 

and 

On t h e  other hand, from Eqs .  20, 

I 

which suggests t h a t  

where K i s  independent of 5 ,  equal t o  [Vy(dVx/dk)-Vx(dV /dc)], and can 

be determined from the values of VxJ V 
1 Y 

dVx/d5 and d V  /dk a t  5 = Eo. 
Y 9  Y 

suppose t h a t  the  condition of e l e c t r i c a l  n e u t r a l i t y  i s  s a t i s f i e d ,  

i . e . ,  

-'e , Ni = N and vi - - 7, . -Ti 
= Nee e N. e' 

1 
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Then the right-hand s i d e  of Eq. 1 8 ~  vanishes so t h a t  EZ must b e  

independent of 5 .  

f i e l d ,  it i s  assumed t o  be  zero i n  t h e  present  d i scuss ion .  

Although EZ may s t i l l  conta in  t h e  e l e c t r o s t a t i c  

Consequently 

cp i s  independent of 5 ,  i . e . ,  cp = cp,, a constant,  which i s  taken t o  be  

zero f o r  convenience. Thus, under t h e  conditions (Eqs. 25), Ro can be 

expressed as 

where 

RO 

e N 

- (KTez) 

(c2-V: ) 

E 
(1 +2)  0 L =  

and 

It should be noted t h a t  a poss ib l e  so lu t ion  of Eq. 23 i s  t h e  pe r iod ic  

func t ion  of k ,  given i n  t h e  form: 

where k and V a r e  constant and independent of 5 .  
0 

!The t r ansve r se  magnetic f i e l d  then  i s  obtained from Eq. 12b as 

B = kVo s i n  k(5 - to) and B = kVo cos k(5 - 5 0 ) . (28 1 Y X 

Since 5 = ( 2 -  v t )  it i s  e a s i l y  recognized t h a t  t h i s  form of s o l u t i o n  

r ep resen t s  a propagating wave with a propagat ion cons tan t  k and angular 

frequency w = kvo. 

R i s  independent of 5 .  From Eq. 22a dp/dS = 0, and from Eq. 22b 

0 

Furthermore (Vz + V2) = V2 i s  a cons tan t  SO t h a t  Y 0 

0 
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dO/d! is constant which implies that the electromagnetic wave 

propagating in the plasma is a circularly polarized wave. 

constant k of the wave must be so chosen that Eqs .  20 are satisfied. 

Consequently k must satisfy the following relationship: 

The propagation 

( 1/21 QV,' 
k2 = LQe ? 

which can be written as 

(c2k2 - w') = u2 exp ( $ QVZ ) 
0 

where 

'T 

w2 0 = w2 P (1 + 2)(\ - 1) . 

1, should be observed that Eq. 29b is simply the dispers-Dn equa .on 

for the transverse electromagnetic wave propagating in the plasma. 

111. PLASMA I N  COMBINED ELECTROSTATIC AND - MAGNETOSTATIC FIELDS - - 

Suppose that the externally applied electrostatic and magnetostatic 

fields are directed along the z-direction. 

be modified as follows: 

For this case E q s .  14 must 

Y 

+ e  d - ( Q  - vxvx 
m dk 

and 
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1 

where B denotes a constant applied static magnetic field. 

Suppose that a solution of E g .  30a is looked for in the form: 

0 

where 

in which go is an arbitrary constant determined by the normalization of 

the distribution function. T and uo are constants which correspond 

respectively to the temperature and directed velocity (or drift velocity) 

along the z-axis. Upon substitution of Eq. 31 into Eq.  30a the following 

set of equations is obtained: 

ez 

and 

dV 
eh Q - vovz - vxvx - v V )  Y as m dS m dS F =  (KT,,)d5( Y Y  

h h . 5  dVx - ah + y ah 
X Y 

(333 ) 

which can a l s o  be written in terms of the electromagnetic fields as follows 

(using E q s .  12a and 12b): 



I .  
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and 

A possible general solution of Eq. 33a can be written as 

follows : 

where 

and 

in which h 

convenience of calculation Eqs. 33 and 34 are converted into cylindrical 

coordinates in velocity space by letting 

is to be determined by substituting Eq. 34 into Eq. 33b. For 
0 

I 

(35 1 v =  v cos 8 and v = v sin 8 . 
X r Y r 

In order that Eq. 33b be satisfied identically with respect to 8 for h given 

by Eq. 34, the following conditions must be satisfied: 

- = o ,  dS 

eEZ ah 

$ + (KT,,)ho = O ’ 

u v  
a( C 2)2 - i& [( $)(>)Ez - - (I) o r  C - d5 - vrBY] ho = 0 

r ez r 

and 
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A 
where o = eBo/m is the electron cyclotron frequency. C 

If h is chosen as 
0 

, 

where 9(E) is related to E 

satisfies E q s .  3 3 .  Thus the distribution function for electrons can be 

written as follows: 

by Eq. 1811, then the function h given by Eq.  34 
Z 

(VE + v') 
Y =  e ez oe 2KTel Y 

m 
f(vx,v ,v , E )  = n exp [+ (uz - u )' - - 

where u = (vz - v ) and ne is an undetermined constant of normalization. 
Z 0 

The distribution function for ions can be obtained by replacing 

e, m, wc, Te and ne by -e, M, -Rc, T. and ni respectively in Eq. 38: 
1 

Since the form of the distribution functions has been determined, the 

integrals of Eqs .  l3a-d can, in principle, be evaluated. 

of these integrals involves error functions which can be treated 

approxinately under the conditions illustrated below. 

approximation these integrals can be evaluated analytically. 

The calculation 

For the appropriate 



t 

For convenience, suppose that a factor 6 is defined as 

where B 

denotes the longitudinal static magnetic field. 

the ratio of the directed velocity (or  drift velocity) in the z-direction 

to the thermal velocity in the same direction, and the second factor is the 

ratio of the thermal velocity in the transverse direction to that in the 

longitudinal direction. Then fo r  

denotes the magnitude of the transverse magnetic field and B I 0 

The first factor represents 

63 << 1 (41 1 

the components of the electronic current density are given as follows 

(see Appendix A f o r  details): 

- + p b 2 + p b b  +pb2) , 
3 x  4 x y  5 y  jx - q(p0 + plbx + p2bY 

= K,,(lo + I b + I  b + I bz + I b b + I b2) , 
jz 1 x  2 Y  3 4 X Y  5 Y  

where 
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eN & -z2fls ecp(k) 

) exp ( - ) KTez 

e - 
KL - 2a 

2fl s e d 5 )  
K = eNev -2z ) exp ( -) 

1 1  KTez 

4 U - - - -  4 (s2+2)a - -  
Po - ( s2+1) .J;; s(s2+4) .J;; (s2+4) 

’ 
p2 

- S - -  

- 6su2 
- -6 ( s2+3) u2 - ’ 

’ p5 ( s2+1) ( s2+9) p4 ( s2+1) ( s2+9) 
- 3 (s2+7)  su2 - - 

( s2+1) ( s2+9) 

8 U - - - 4 U - 
90 - ( s2+1) ’ q1 G (s2+4) & s(s2+4) 

’ 
q2 

- - -  - 1. - 

12su2 - 1 8 ~ ~  
, 9 =  - - -3 (s2+3) u2 - Y 

q3 ( s2+1) ( s2+9) ’ q4 ( s2+1) ( s2+9) 5 ( s2+l) ( s2+9) 
- 

I = -  P =  ’ 1  = -  Y 
1 

0 s ’  1 ( s2+1) 2 ( s2+1) 

-4U2 
y 1  = -2(s2+2)u2 - 4a2 I =  - Y 

3 s ( s2+4) 4 ( s2+4) 5 s ( s2+4) 

i n  which EZ i s  t h e  z -d i rec ted  e l e c t r i c  f i e l d ,  and Ne i s  t h e  e l e c t r o n  

concentration a t  t h e  r e fe rence  p o i n t  k = k o  wi th  E, = 0. 
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i 

On t h e  o ther  hand, t h e  components of t h e  ion cur ren t  dens i ty  have 

t h e  same form as t h e  e l ec t ron  cur ren t  dens i ty ,  namely Eqs. 42, and the  

c o e f f i c i e n t s  now take  t h e  following form ( t h e  subsc r ip t  i i s  introduced 

t o  denote t h e  f a c t  t h a t  t h e  quant i ty  i s  a s soc ia t ed  with ions ) :  

ecpw ) (- KTiz ) ’ = -eN v i i  K 
I li 

a2 E - 2KTil M 1 
’ ‘i - & - - ( ? ) E  Z ’  , 

KTi z 

Since t h e  cur ren t  d e n s i t i e s  of e l ec t rons  and ions  have been determined, 

with t h e  a i d  of Eqs. 12a and 12b, Eqs. 13a-d can be w r i t t e n  as 
I 

and 

I n  view of t h e  f a c t  t h a t  dFZ/dF; must be  zero as suggested by Eq. 36a, t h e  

r ight-hand s i d e  of Eq. 45c must vanish. 

cond i t ion  must be imposed on t h e  parameters of both ions  and e l ec t rons :  

I n  o ther  words, t h e  fol lowing 
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Furthermore, since E is independent of 5 ,  the presence of a uniform static 

electric field in the z-direction is permitted in the present analysis. 

Z 
I 

I 

The electromagnetic fields in the plasma as a function of 6 can, 

in principle, be obtained by solving Eqs. 45 with the aid of Eqs. 43 

and 44 for properly specified boundary conditions. However, Eqs. 43a and I 

i 
I 

43b can also be conveniently used to study the effect of the longitudinal 

static electromagnetic fields on the transverse dynamic magnetic field as 

illustrated in the following section. 

IV. BEHAVIOR OF TRANSVERSE EIECTROMAGNETIC FIELDS I - - 

Equations 45a and 45b can be written as follows with the aid of 

Eqs. 43 and 44: 

dy = p + P X + P Y + P X 2 + P X Y + P 5 Y 2  
dS 0 1 2 3 4 

and 

- -  dx = Qo + Q X + Q Y + Q3X2 + Q4XY + Q5y2 j 

dS 1 2 

where 

P = ( c p  - c p  L n e n,e i n,i 
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I 

- e2Ni 
? p = _ -  , R c = -  - eBO 

? Loc = - w2 E - e2Ne 
P ME 0 M 9 (4%) m 

0 P 

i n  which E 

Case I. 

i s  a constant l ong i tud ina l  s t a t i c  f i e l d  present  i n  t h e  system. 
0 

S t a t i c  E l e c t r i c  Field-Free Case (Eo = 0 ) .  -- --- 
I n  t h i s  case t h e  c o e f f i c i e n t s  P and Q i n  Eqs. 47 and 48 a l l  vanish 

except f o r  P and Q which become equal t o  one another,  so t h a t  
1 2 

where 

Since t h e  c o e f f i c i e n t s  p a r e  independent of 5 ,  t h e  so lu t ion  of 
1 7 0  

Eq. 50a obviously i s  a pe r iod ic  function of 5 and can be w r i t t e n  as 

X = Mo COS ko(5 - to) and Y = M 0 s i n  ko(5 - to) , (514 

where Mo and So a r e  a r S i t r a r y  constants and t h e  constant k 

determines t h e  s p a t i a l  per iod i n  t h e  wave frame, y e t  t o  be determined, 

i s  given by 

which 
0' 

(5lb 1 

On t h e  o the r  hand, from Eqs. 36c and 36d (using Eq. 37) one has  

d B w  T 
X 

Y e l  
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which r e l a t e  t h e  e l ec t ron  parameters t o  t h e  t r ansve r se  magnetic f i e l d .  

The corresponding s e t  r e l a t i n g  t h e  ion parameters t o  t h e  t r ansve r se  

magnetic f i e l d  can b e  obtained by rep lac ing  o 

Ti z 

two s e t s  of equations agree,  it i s  requi red  t h a t  

T,,, and T with -Qc, e l  

and Til i n  Eq. 52a. Then i n  order  t h a t  t h e  f i e l d s  obtained from t h e s e  

1 T 

mu oe 

Furthermore, s ince  t h e  t ransverse  magnetic f i e l d  components Bx and B Y 

must satis@ both s e t  (508) and s e t  (52a) ,  t h e  following r e l a t i o n -  

sh ip  i s  es tab l i shed:  

- - 9(L-1) eB , 

oe Tel mu P 
1 j O  

Suppose t h a t  

oe ' = Ne a n d u  = u Ni o i  

then by using Eqs. ?Ob, 51b and 52b, Eq. 52c can be w r i t t e n  as 

(e' - v:) B2€ = u2 ( T Ti I (mi) + (de)) , 
Te z 0 0  oe \ iz 

which can a l s o  be obtained by equating P t o  [eBo/Muoi(l - Tiz/TiL) 1 .  
1,O 

It i s  of i n t e r e s t  t o  observe t h a t  s ince  5 = (z - vat), t h e  form of 

so lu t ion  given by Eq. 5la appears t o  an observer i n  a l abora to ry  frame of 

re ference  as a c i r c u l a r l y  polar ized  plane wave wi th  a propagation cons tan t  

ko and angular frequency o = kovo. 

mode of propagation i s  given by Eq. 52e, which can also b e  w r i t t e n  as 

The d i spe r s ion  equat ion f o r  t h i s  
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(C2kz - a") = C2k2u2 o oe ( 9) , 
0 

where 

Po = [mi (1 +?) t m N e  (1 +?)I , 

i n  which 

On t h e  other  hand, Eqs. 5 1  being a parametric r ep resen ta t ion  of a 

c i r c l e  i n  t h e  X-Y plane suggests t h a t  t he  t i p  of t h e  t ransverse  magnetic 

f i e l d  vector denoted by the  poin t  W(X,Y)  descr ibes  a c i r c l e  as t h e  

parameter 5 increases .  This p i c tu re  represents  t h e  r o t a t i o n  of t he  t r a n s -  

verse  f i e l d  vector  about t he  z-axis as it propagates along t h e  z-axis. 

The r a t e  a t  which t h e  t ransverse  magnetic f i e l d  vector  (or  t h e  t r ansve r se  

e l e c t r i c  f i e l d )  r o t a t e s  per  u n i t  d i s tance  i n  5 ( i n  the  wave frame) i s  

given by ko. 

terms of t h e  system parameters. 

For example, given (u, k can be  determined from Eq. 52f i n  
0 

The a lgebra ic  s igns  assoc ia ted  with Eq.  51b denote t h e  f a c t  t h a t  

t h e  plasma i s  capable of supporting both right-hand and le f t -hand  

c i r c u l a r l y  polar ized  plane waves. 

propagat ing i n  a magnetoactive plasma s u f f e r s  a Faraday r o t a t i o n ,  which 

i s  t o  be expected. 

Consequently the  electromagnetic wave 

The angle of r o t a t i o n  Cpo can be determined by2j3 

where k 

and right-hand c i r c u l a r l y  polar ized waves, and the  d is tance  d i s  

measured i n  a labora tory  frame. 

and kor denote respec t ive ly  the  wave number of t h e  lef t -hand 01 
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Case 11. Longitudinal Uniform S t a t i c  F ie ld  (E # 0 ) .  
0 -- 

p + P x + P Y + P x2 + P XY + P Y 2  
0 1 2 3 4 - dY - -  - 

dX Q o + Q X + Q Y + Q X 2 + Q X Y + Q Y 2  1 2 3 4 5 ’ 
(54) 

which i s  obtained by combining Eqs .  47 and 48. 

Suppose t h a t  Eq .  46 i s  s a t i s f i e d  (i. e. dEZ/dk = O), which i s  t h e  

case i f  

s = s  = s  J U  = o  = a  ( 5 5 4  i e i e 

and 

Then from Eq. 47 

Although t h e  s e t  of nonl inear  ordinary d i f f e r e n t i a l  equat ions (47) 

and (48) can be solved numerically f o r  X ( k )  and Y ( 6 )  by a s tandard 

technique such as t h e  Runge-Kutta method, once t h e  values  of X and Y 

a r e  spec i f ied  at some reference  po in t  5 = 5 

i nves t iga t e  the  following d i f f e r e n t i a l  equation: 

it i s  of i n t e r e s t  t o  
0’ 

so t h a t  Eq. 54 becomes 

where 

p(X,Y) 3 Po + p x  + p x  + p x 2  + p X Y  + p Y 2  
1 2 3 4 5 

q(X,Y) = qo + q x + q Y + q x2 + q XY + q5Y2 J 
1 2 3 4 
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I 

and 91 = qnJe  a r e  given i n  Eqs. 43 and a r e  independent 'n, e where p 

of 5. 

X-Y plane gives  t h e  des i r ed  information with regard  t o  t h e  v a r i a t i o n  of 

magnitude and po la r i za t ion  of t h e  t ransverse  magnetic f i e l d  with t h e  

v a r i a t i o n  of s t a t i c  e l e c t r i c  and magnetic f i e l d s .  

n 

The p l o t  of t h e  so lu t ion  of d i f f e r e n t i a l  equation (56a) i n  the  

It should be  noted t h a t  from Egs. 43 

which i s  t h e  necessary and s u f f i c i e n t  condi t ion f o r  Eq. 56a t o  be  an exact 

d i f f e r e n t i a l  equation. Therefore the  so lu t ion  of  Eq. 56a can be given as 

9 
p x  i 1 +  - x 2 + - y  p5 2) + qoY (1 + x2 + 5 Y2) 

P 

0 i 3P0 PO ~ 90 3q0 

q2 + J x 2  + p XY + - Y 2  = c , (57) 
P 

2 2 2 

where C i s  a constant  of i n t eg ra t ion  which i s  t o  b e  determined by t h e  value 

of X and Y a t  some reference  poin t  5 = 5 . For example, i f  X = 0 and 

Y = Y then  C can b e  given by 

0 

0' 

9 9 
c = q Y . + L Y E + F Y g  0 0  2 , 

A s  an i l l u s t r a t i o n  Eq. 57 i s  p l o t t e d  f o r  a few se l ec t ed  sets  of 

parameters s and o and shown i n  Figs. 1 through 6.  

I n  view of t h e  f a c t  t h a t  (p3/3pO), ( P ~ / P , ) ~  (q3/qo) and (q5/3qO) 

a r e  a l l  l e s s  than  o2 f o r  an a r b i t r a r y  value of s ,  i f  t he  condi t ion 
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FIG- 3 PLOT OF Y VS. X FOR s = 0.1 AND Yo = 1.0, W I T H  u AS A PARAMETER- 
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3a2(X2 + Y Z )  << 1 (59) 

i i s  s a t i s f i e d , t h e n  Eq. 57 can be  reduced t o  the  following second-degree 

equation: 

P 1 x2 + 2P 2 XU + q 2 Y2 + 2p0x + 2q0Y = 2c , 

which represents  a conic sec t ion  i n  t h e  X-Y plane.  Since 

which i s  a negative quant i ty ,  Eq. 60a represents  a family of e l l i p s e s .  

The term i n  (XU) can be  made t o  vanish i n  Eq. 60a by a r o t a t i o n  of 

coordinate axes through an angle  T ,  such t h a t  

t a n  2~ = 2p2 = (:) . 
(P - 9 )  
1 2 

Upon performing t h i s  r o t a t i o n ,  

X = X '  cos z - Y '  s i n  T , 

Y = X '  s i n  T + Y '  cos z , (God) 

and E q .  60a can be  arranged i n t o  t h e  fol lowing s tandard  form f o r  an 

e l l i p s e  : 

( X I  - x t ) 2  ( Y '  - Y ' y  
= 1 ,  O +  0 

b2 
0 

a2 
0 

i n  which 
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-D ' -E '  , X' = = ,  y '  - - 
0 - 2C' 0 

where 

a2 = A ~ . ~ + ~  
0 D'2 E'2 + , 

1 f D t 2  + E" + F l )  , 
b2 = c'\ 4A' 4c' 0 

(2  s i n  2.r + s cos T )  A' = L(f)(l- S 
&. s2 + 4 

(2  s i n  2T + s cos T )  
S 

s2 + 4 

i 

8 0 y,' + -  - 0 
2Y 

F' = - 
s2 + 1 &- ( s 2  + 4) 

The center  of t h e  e l l i p s e  i s  loca ted  a t  t h e  poin t  ( X '  = XA, Y' = Y;) 

and t h e  lengths  of t h e  axes of the e l l i p s e s  a r e  2ao and 2b0. 

p l o t  of Eq. 60a i s  i l l u s t r a t e d  i n  Fig.  7. 

A t y p i c a l  

The des i red  information i n  regard t o  t h e  t ransverse  magnetic f i e l d  

vec tor  can be obtained from Fig.  7; t h e  magnitude and the  angle between t h e  

x- and y-components, which spec i f i e s  t h e  s p a t i a l  o r i en ta t ion  of t h e  

t r ansve r se  magnetic f i e l d  vector, a r e  given r e spec t ive ly  by (RB ) and 0 ,  

where 

0 
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X 

FIG. 7 PLOT OF Y vs. x BASED ON EQ. 60a FOR s # o AND 3s2 << 1. 
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I 

i n  which X and Y a r e  t h e  coordinates of a poin t  W(X,Y)  on t h e  e l l i p s e .  

I n  view of t h e  f a c t  t h a t  t h e  e l l i p s e  of Eq. 6 0 ~  can b e  wr i t t en  paramet r ica l ly  

as 

X' = X' + a cos ( , 
0 0 

where t h e  parameter 5 i s  t h e  angle  which i s  t o  b e  measured as ind ica ted  i n  

Fig.  7, R(() and O(5) can be expressed as 

R ( 5 )  = ,/(.A + a. cos o2 + (Yd + bo s i n  ()2 

Y' + b s i n  5 
-1 ( 0 0 O ( 5 )  = T + t a n  

X' + a cos ( 1 
0 0 

R(() i s  a per iodic  func t ion  of 5 and has  i t s  c r i t i c a l  values (maximum 

o r  minimum) when dR/d( = 0, which occurs a t  5 = 5 such t h a t  c '  

a s i n  ( Y '  + bo s i n  c c  
0 c z  0 

X' + a. cos * 
0 

bo cos 

Once 3, s and Yo a r e  spec i f ied ,  t he  q u a n t i t i e s  XA, Y;, a 0 and b 0 

a r e  a l l  determined so t h a t  Eq. 64 can be solved f o r  cc ,  from which t h e  

maximum and minimum values of R ( 5 )  can be  obtained. Furthermore it should 

be  noted t h a t  as t h e  parameter s approaches zero,  t h e  angle  of r o t a t i o n  

of t h e  coordinate axes T .+ -fi/4, so t h a t  A '  -+ ( 2 / & ) 0 / s ,  C '  -+ ( ~ / & ) G / s ,  

D' --f - &, E -+ - & and F' --f (2/ &) (G/s)Y~. 

Y '  approach zero as of [ ( - & / a ) ( s / a ) ]  and both a. and bo approach Y 0 . 
m e r e f o r e  Eqs. 63 g ive  

Consequently both XA and 

0 
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R(() = Yo = constant  and O ( ( )  = ( + L J ~  + rr/4 , 

where I i s  an in teger ,  and X and Y can be  given as 

Thus it i s  observed t h a t  as S + 0, t h e  e l l i p s e  i s  gradual ly  deformed 

i n t o  a c i r c l e  whose cen te r  i s  loca ted  a t  t h e  o r i g i n  (X = 0, Y = 0)  and 

whose radius  i s  equal  t o  a - - Y o .  
0 

A comparison of Eqs. 31 and 66 suggests  t h a t  

( = 1 r 5  ,  for^ = o . (67) 
0 o 

It should b e  pointed out  t h a t  Eq. 67 i s  v a l i d  only i f  Eo = 0 .  

hand, i f  E i s  d i f f e r e n t  from zero,  bu t  s u f f i c i e n t l y  small  so t h a t  t h e  

coe f f i c i en t s  P and Q i n  Eqs. 47 and 48 a r e  very slowly varying func t ions  

of 5 ,  then it  would not be  unreasonable t o  expect t h a t  X ( 5  and Y ( t  ) w i l l  

be almost per iodic ,  and to expect t h e  W-point i n  Fig.  7 t o  move along t h e  

e l l i p s e  as 5 var i e s .  However, t h e  s p a t i a l  per iod  i n  t h e  wave frame i s  

expected t o  be  d i f f e r e n t  from t h a t  i n  t h e  case  of Eo = 0.  

noted t h a t  under t h e  condi t ions  of Eq.  59, Eqs. 47 and 48 a r e  reduced t o  

t h e  following s e t  of l i n e a r  equations: 

On t h e  o ther  

0 

It should be  

- dY = P + P X + P Y  , 
dS 0 1 2 

- E  = Q + Q X + Q Y  , 
d5 0 1 2 
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the solution of Eqs. 68 may be expected to be almost periodic and its 

period can be estimated approximately by solving Eqs. 68 as if the 

coefficients P and Q are independent of 5 .  

I (eEo/KTZ) 5 1 << 1 and exp [T (eEo/KTZ) E ]  21 1. 

formation of dependent variables: 

In other words, 

Then through a trans- 

and the set of Eqs. 68 is transformed into the set, 

and 

where 

A = ( s 2 ; 2 ) ~  , B - -Q -S , C = S Q  , D = Q2 , 
1 1 2 1 - 2  2 1 2 2  

Q =  
2 ( s 2  + 4) 

in which condition (55a) has been used and P is given in Eq. 50b. 
1 9 0  

Elimination of Y" from Eqs. 70a and 70b yields 

and elimination of X" gives 



where 

I n  view of t h e  f a c t  t h a t  K2 i s  a p o s i t i v e  quant i ty ,  t h e  so lu t ions  of Eqs. 71a 

and 71b a re  pe r iod ic  func t ions  of 5 i n  t h e  wave frame and can be  w r i t t e n  as 

X " ( S )  = M COS (KS + L ) 
1 1 

and 

Y " ( 5 )  = M COS (KS + L ) , 
2 2 

where M , L , M and L are a r b i t r a r y  cons tan ts .  The constant  K i s  given by 
1 1 2  2 

where 

It should be noted t h a t  when (L -L ) = n / 2 ,  Eqs. 72a and 72b are 
1 2  

t h e  parametric equations of an e l l i p s e .  

po la r i zed  plane wave i n  a l abora to ry  frame. 

denote, respec t ive ly ,  t h e  values  of k and $ which are q u a n t i t i e s  def ined  

f o r  t h e  case E 

number K, appearing i n  Eqs. 72, and t h e  Faraday r o t a t i o n  A f o r  t h e  case 

E = 0 can b e  expressed as follows: 

Thus t h e  r e s u l t  i s  an e l l i p t i c a l l y  

Furthermore, i f  KO and no 

0 0 

= 0 under t h e  condi t ion s t a t e d  by Eq. ??a, then t h e  wave 
0 

0 

K a - = P(s)  and a = P(S) , 
KO 0 

(73) 

where t h e  f ac to r  p(s )  i s  def ined  i n  Eq. 72d. Since ~ ( 0 )  equals  u n i t y  

and f o r  s < 0 , i t  decreases  as I s \  i nc reases ,  Eqs. 73 suggest  that the 

Faraday r o t a t i o n  angle  decreases  while  the wavelength A = a / K  i nc reases  

wi th  an increase  of I S I .  



V. - DISCUSSION OF RESULTS - 

For a proper ly  constructed so lu t ion  of t h e  nonl inear  Boltzmann- 

Vlasov equat ion i n  a moving frame of re ference ,  s e t s  of ord inary  

nonl inear  d i f f e r e n t i a l  equations governing t h e  components of t h e  vec tor  

and s c a l a r  p o t e n t i a l s  have been derived; Eqs. 17, f o r  t h e  case where t h e  

s t a t i c  e l e c t r i c  and magnetic f i e l d s  a r e  absent,  and Eqs. 43 f o r  t h e  

case where s t a t i c  e l e c t r i c  and magnetic f i e l d s  a r e  p re sen t  i n  t h e  plasma. 

The numerical ana lys i s  of t hese  s e t s  of d i f f e r e n t i a l  equat ions i s  i n  

progress  and w i l l  be  discussed i n  a f u t u r e  r e p o r t .  

It i s  of 

example, i n  t he  

Tix - - Tiy = Til 

i n t e r e s t ,  however, t o  consider a few s p e c i a l  cases .  For 

case of no s t a t i c  f i e l d s ,  with Tex = T 

and under the  condi t ion of e l e c t r i c a l  n e u t r a l i t y ,  Eqs .  17 

= T and ey e l  

a r e  s impl i f i ed  considerably and could l ead  t o  a c i r c u l a r l y  po la r i zed  plane 

wave so lu t ion  (Eqs. 27) with a d ispers ion  r e l a t i o n s h i p  given by Eq.  29b. 

It should be observed t h a t  f o r  a r e a l  k, w can be r e a l  or complex, 

depending upon whether (ck)2  i s  g rea t e r  or  l e s s  than w2 exp (QVz/2), which 

suggests  t h e  p o s s i b i l i t y  of i n s t a b i l i t i e s  i n  t h e  system. 

b e  noted t h a t  i f  Tel # TeZ, t h e  wavelength of t h e  t r ansve r se  electromagnet ic  

wave, h = &/k, does depend upon the amplitude Vo of t h e  wave and i s  obvious 

from Eq. 29b. 

of the wave amplitude, and Eq. 29b becomes 

0 

It should a l s o  

On t h e  o ther  hand, i f  QVE/2 (< 1, then  h becomes independent 

Moreover i f  T 

so  t h a t  

<< Tiz and Tel << Tez, then from Eqs. 25 Tiz/Tez = n2/,2 
il P P  

= -(u2+R2). Furthermore i f  t h e  ion  motion can a l s o  be neglected,  
P P  

-39- 
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i.e., Tiz << Tez, then CUE = -a2. 

linear dispersion equation' for transverse plasma oscillations when 

no static magnetic field is present. 

Thus Eq. 74 is reduced to a familiar P 

It should be noted that the set of nonlinear differential equations 

(47) and (m), governing the behavior of the transverse magnetic field, 
when there exists longitudinal magnetostatic and electrostatic fields, 

is derived under the condition that 63  << 1, where 6 is defined in Eq. 40. 

6 can also be written as 6 = uR, where 0 3 +z J.I/Tz and 
R E (B /BG). 

permits consideration of a wide range of system parameters. However, 

it should be pointed out that this condition was considered mainly 

because of mathematical convenience in illustrating the method of 

analysis. 

would have appeared in the current density expressions of Eqs. 42 as 

well as in Eqs. 47 and 48. 

The condition E3 << 1 is not a severe restriction and 
I 

If it were not imposed thenthe higher-order terms in bx and b 
Y 

It has been shown that in the absence of a longitudinal static 

electric field the plasma can support circularly polarized plane waves, 

whose dispersion relation is given by Eq. 52f under the condition of 

electrical neutrality. 

vanishes (i.e., v = 0, or u 

anisotropy, AT 

(mi + We), which is the mass density of the plasma. 

can be written as 

For a plasma whose mean velocity along the z-axis 
- 

= -vo) and which exhibits a small temperature 
0 

<< Tez and ATi << Tiz, po, given in Eq. 52g, becomes e 

Consequently Eq. 52f 

c 2kg 
- v =  A (75 ) 
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I 

where v is the Alfven velocity and Eq.  75 is recognized as the dispersion 

relation for the Alfven wavesz1. 

A 
1 

On the other hand, from E q s .  50b and 51b, 

NiUoi For a plasma under the condition of quasi-electrical neutrality,i.e., 

Neuoe, and vanishing mean velocity along the z-axis (i.e., v = 0), the 
- 

refractive index n can be expressed as 

which is recognizable as the dispersion relation from magnetoionic theory 

for cu << Rc < cue. Thus it appears that Eq.  52f or E q .  76a may be 

profitably applied to the investigation of some ionospheric phenomena, 

such as VLF emissions and whistler mode propagation in ionospheric 

plasmas. 

It has also been shown that for the case where a longitudinal static 

electric field is present (i.e., E 

magnetic field no longer remains invariant, as in the case of E 

varies with distance in the wave frame. 

x- and y-components of the magnetic field vector are related by E q .  57 and 

the tip of the magnetic field vector describes the curves as illustrated 

in Figs. 1 through 6. 

E q .  59, except for extremely small values of cr, the locus of the tip of 

the magnetic field vector describes an ellipse as shown in Fig. 7. It is 

observed that the magnitude of the normalized transverse magnetic field 

# 0), the magnitude of the transverse 
= 0, but 

Under the condition 63 << 1, the 

0 

0 

However, under the small-amplitude condition of 
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vector R = (B /B ) varies between its minimum and maximum values in a 

wave frame as 5 varies, and that as s -+O, the ellipse is gradually 

deformed into a circle. 

IeEo!/kTZI << 1, it is shown that the solution of Eqs. 47 and 48 is a 

periodic function of 5 ,  as given by Eqs. 72 and the tip of the magnetic 

field vector describes an ellipse in a wave frame. Thus it is observed 

that the transverse electromagnetic wave in the presence of a weak 

static longitudinal electric field can propagate along the static 

longitudinal magnetic field as an elliptically polarized plane wave with 

the magnitude of the rotating magnetic field vector varying periodically 

with distance z. 

polarized plane wave propagating in a magnetoactive plasma is modified 

by the presence of a longitudinal static electric field. 

of the wavelength A and the Faraday rotation angle, A, due to a weak 

static electric field E is given in Eqs. 73 and is valid for an 

arbitrary value of the parameter s. 

that the Faraday rotation angle A tends to decrease, while the wavelength 

A increases, with an increase of 1s 1 .  
s is defined as [ (muo/KTZ) (Eo /Bo) ] ,  an increase in B 

to decrease, A to increase and A to decrease, which is 

I O  

Furthermore, under condition (59) for the region 

Therefore the amplitude and phase of a circularly 

The modification 

0 

An examination of Eqs. 73 reveals 

It is of interest to note that since 

will cause 1s I 
considered 

0 

reasonable. 

I 
I 

I ,  

i '  

' I  
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APPENDIX A. DERIVATION OF EQS. 42 AND 43 -- --- - 

For the electron distribution function given by E q .  38, the electron 

current density components may be given as 

2rr 

0 

se 
= L J I ( e )  sin e e de , jY 0 2 

0 

0 
where 

- 
@J - -(vz-v)* m 

ez 
Lo - -n e e exP (gF)Je dvZ = - J;; ,,/% nee exp ($1 , 

2KT 
- - 

-a, 

I !  

a, 

Z ez KT 

and  

-43- 
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' I  

where 1 ,  

I 
, 

I ( e )  and I ( e )  can be  evaluated t o  g ive  
1 2 

where 

XJ 

e r f c  (7) E LJ' e-t2 d t  = [l - e r f ( 7 ) l  J 

7 
J;; 
IL 

i n  which e r f ( 7 )  i s  t h e  usua l  e r r o r  func t ion .  

It i s  we l l  known t h a t  t h e  func t ion  e r f ( 7 )  can b e  expanded i n t o  a 

power s e r i e s  i n  7 (e.g., see  Dwight22, p.129): 

. 

For cases  i n  which r3 << 1 (e.g. ,  7: = 0.01, which i s  equiva len t  to 

= 0.217), f o r  7 < yo, 
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I .  

I 
I .' 

I 1  

so t h a t  I (e)  and I (e) can be approximated as 
1 2 

I ( e )  
2 4a3 A 

- y 1  + 4r + 

Since y can a l s o  be  wr i t t en  conveniently 

where 

7 = 6 cos  (0 - 

I -  

t h e  condi t ion r3 << 1 implies  t h s t  

E3 << 1 . 

On t h e  o ther  hand Y can a l s o  be wr i t ten  as 

7 = ( a T ) ( B x  cos 8 + B s i n  6)  , 
Y 

where 

S u b s t i t u t i n g  I ( e )  and I (e ) ,  given by Eq. A.6, i n t o  E q s .  A . l  and car ry ing  

out t h e  i n t e g r a t i o n  y i e l d s  

1 2 
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+ 3 4 a ' ~ ~ C ~ )  BE + 6a2~2(S1 - S3) B B + 3a2T2(C1 - C3) B2] J 
1 1 1 X Y  1 1 Y  

+ 3a2.r2(S1 - S3) B2 + 6 a 2 ~ 2 ( ~ 1  - C3) B B + (3a2T2S3) B2 
1 1 x  1 1 X Y  1 Y  1 

- ( 2 a " ~ ~ C ~ )  BZ - ( 2 a ' ~ ~ S l )  B B - (2a2~2S2) B2] , 
1 2 X Y  1 Y  

where 

2fi S) (1 - e 9 
se -S 

cos 6e de = 
(s' + 1) 1 

0 

se -2 (1 - e 2f lS)  s2 = 1 sin2 8e de = , 
1 s(s2 + 4)  0 

(A.lO) 

(A. l l a )  

(A. llb) 

(A.llc) 

(A.lld) 

(A.lle) 
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I 

t 

I 

Defining 

L 

(A.llf) 

- 
B B 

ez ez 
b Ex 7 b  E Y a n d a =  

BO Y BO 
X 

(A. 12)  

the  f a c t o r s  (aTB ) and (aTB ) appearing i n  Eq. A.10 can be 

replaced by ( obx) and (ab ) 

respec t ive ly  
X Y 

s o  t h a t  
Y 

= Kl(qo  + q ? x  + q 2 y  + q b 2 + q b b  3 x 4 x y + q b 2 )  5 y , j Y  

+ I b  + P b  + L b z + l b b  + l b 2 )  
j z  = K, 1 x  2 Y  3 4 X Y  5 Y  

where 
P- 

(A. 14a) 

4 U - - - - -  4 (s2+2) u - -  I - S - 
J;; (s2+4) s 132 ( s2+1) p1 & (s2+4) Po - 

( s 2 + 7 )  3sa2 - - -(s2+3) 6a2 - - 6 SO2 

( s2+9) ( s2+1) % (s2+9)  (s2+1) p5 (s2+9)  (s2+1) 
P =  
3 

(A. 1kb) 
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4 20 - -  - -4 u - -  

Qo - ( s2+1) ’ q1 & (s2+4) ’ q2 & s(s2+4) ’ 
- -1 - 

- 12 s u2 - ..1a02 - -(s2+3> 3a2 - - ’ 
( s2+9) ( s2+l) ’ q5 ( s2+9) (s2+l) ’ q4 

- 

q3 (s2+9)  ( s2+1) I 

(A. 14c) 

1 
p = & -  0 ’ 1  = - & -  0 ’  

S 1 p = -  
0 s ’  1 ( s2+l) 2 ( s2+1) 

1 = -  - U2 . (P.14d) -4 
u 2 , 1  = 

4 - 

3 s ( s2+4) 4 (s2+4) 5 s ( s2+4) 

By substituting the values of L and L 

and if the distribution function f is normalized to a constant density Ne’ 

with Eo = 0 ,  KI and K , ,  can be expressed as 

into the expressions for K 1 and K , ,  
0 1 

, 

- e *“)) exp ( -P) 9 

Kl - 2a KTe z 

Thus Eqs .  42 and 43 are obtained. 

(A. 15) 
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